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Abstract. A key aspect for effective variability modeling of Software Product
Lines (SPL) is to harmonize the need to achieve separation of concerns with the
need to satisfy consistency of requirements and constraints. Techniques for vari-
ability modeling such as feature models used together with use scenarios help to
achieve separation of stakeholders’ concerns but ensuring their joint consistency
is largely unsupported. Therefore, inconsistent assumptions about system’s ex-
pected use scenarios and the way in which they vary according to the presence
or absence of features reduce the models usefulness and possibly renders invalid
SPL systems. In this paper we propose an approach to check consistency the
verification of semantic relationships among the models between features and
use scenarios that realize them. The novelty of this approach is that it is specially
tailored for the SPL domain and considers complex composition situations where
the customization of use scenarios for specific products depends on the presence
or absence of sets of features. We illustrate our approach and supporting tools
using variant constructs that specify how the inclusion of sets of variable fea-
tures (that refer to uncommon requirements between products of a SPL) adapt
use scenarios related to other features.

1 Introduction

A Software Product Line (SPL) can be defined as “a set of software–intensive systems
sharing a common, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core assets in
a prescribed way”[7]. In SPLs, requirements are organized by features that are useful
to express product functionalities concisely [19]. There are common features between
all the products in the product line (sometimes called mandatory features), and there
are variable features that allow distinguishing between products in a product line. In
SPL development the problem space focuses on variability modeling and describes the
different features available in an SPL and their interdependencies. A common repre-
sentation to model variability are the feature models, where features are realized with
correspondent artifacts, for example use scenarios diagrams [8].



To produce particular products from a SPL, feature realizations have to be composed
according to a specific selection of features from a feature model usually called product
configuration (also referred to feature model configuration). This process requires a
mapping between features from a feature model, and artifacts such as use scenarios
that realize them. A use scenario is a widely used technique that describes, step by
step, how an actor is intending to use a system [14]. A number of different approaches
have been proposed to create mappings among features and models [13,8,20]. However,
ensuring consistency between feature models and recurring requirements specifications
techniques such as use scenario modeling has not been thoroughly researched. In this
context, by consistency checking we mean the verification of semantic relationships
among features and use scenarios. Inconsistent assumptions about system’s expected
use scenarios and their variations according to the selection of different features, reduce
the models usefulness and possibly renders invalid systems. Therefore, it is essential in
SPL to determine whether the variability model and its use scenarios defined in the
domain requirements specification enable the derivation of any product requirements
specification that contains inconsistent requirements.

When a model-based approach is used to represent use scenarios (e.g., in form of
use cases or activity diagrams), consistency goes beyond syntactical or semantic errors
of each kind of model in isolation. For example, an actor that is not associated with any
use case, a dangling node, a loop without exit conditions in activity diagrams or specific
set of features that are both simultaneously (and incorrectly) declared as excluding and
depending. It means that we aim at taking into account constraints that are not merely
expressed in terms of only one language’s metamodel which is generally well supported
by UML editors in the case of use cases and activity diagrams (e.g., using OCL or
hard-coded restrictions particular of each editor) or feature model editors (e.g., using
domain constraints expressing features interdependencies, and hard-coded restrictions
that constrain the construction of the models to conform to their metamodel). In our
work, much of consistency checking difficulty lies on maintaining consistency among
several, interrelated models. This can become a time-consuming and error prone task
given that the number of ways to compose feature realizations grows exponentially with
the possible number of SPL features that can be used in a particular product.

In this paper, we present an approach whose driving objective is to enable consis-
tency checking in the problem space between requirements models such as use scenar-
ios and features. It transforms generic constraints expressions between single features to
rules specifically tailored for use scenarios and set of features. Then, it employs propo-
sitional formulas to relate these specialized rules to the models involved in the creation
of customized use scenarios for specific products. These propositional formulas are pro-
duced based on the relationships between: i) domain constraints that can be obtained
from the SPL feature model, ii) the meaning of the relationships between fragments
in the use scenarios and SPL features, and iii) a composition model that specifies how
to vary SPL use scenarios. Checking if all the products in an SPL satisfy consistency
constraints is based on searching for a satisfying assignment of a propositional formula.
Therefore, our tool translates propositional formulas that can be evaluated by satisfiabil-
ity (SAT) solvers [1]. In case there are constraints that are not satisfied by the SPL, our
tool presents to the developer the particular features and fragments of the use scenarios



involved in the violation of the constraint. In our home automation case study this infor-
mation was useful to take informed decisions about the modifications and additions of
domain constraints, use scenarios and its composition specification. The results of the
application of our approach are encoraging because they did not show scalability and
performance issues, however, we need more extensive validation of our approach with
different case studies.

2 Background and Motivation

To understand consistency between features and use scenarios let us introduce first the
models we use: features model, use case/activity diagrams, mapping model between
features and use cases/activity models, and a composition specification model. After
this, we exemplify inconsistency using these models.

2.1 Models Involved in Consistency Checking

Feature Model. A feature model describes a set of all possible valid product configu-
rations [8]. A configuration specifies a concrete product in terms of its features.

Figure 1-1 shows a sample feature model of part of our running example, the Smart
Home SPL [18]. Smart Home has four optional features, AUTOMATED WINDOWS(AW),
AUTOMATED HEATING (AH), REMOTE HEATING CONTROL (RHC) and INTERNET
as a mean to control the heater and other devices remotely. Also, it has a set of common
features, such as MANUAL WINDOWS and MANUAL HEATING that will be included
in all the target products to be produced using the Smart Home SPL.

Specific product configurations can be defined selecting optional features in the fea-
ture model 1-1. Figure 1-2 shows a sample product configuration of the Smart Home
SPL called PRODUCT-1 that will be used to illustrate consistency problems between
features and use scenarios. PRODUCT-1 has all features except AUTOMATED WIN-
DOWS (AW). Domain constraints in the feature model such as the REQUIRES rela-
tionship from RHC to INTERNET, can be added incrementally and in parallel with the
creation of use scenarios (discussed below).��������	
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Fig. 1. (1) Simplified sample of the Smart Home feature model; (2) Sample SmartHome configu-
ration that excludes the Automated Windows feature.



Use Scenarios. Features can be realized with other models such as use scenarios. To
model use scenarios we employ use case and activity diagrams because they are com-
monly used in mainstream UML-based methods such as RUP [16] and, in contrast to
mere free-form textual scenario descriptions, they help to reduce ambiguity in the spec-
ifications [19].

Use case and activity diagrams provide a description of what products in the do-
main should do. Feature models determine which functionality can be selected when
engineering new products from the SPL. Therefore, product requirements specifica-
tions consist of customized use cases diagrams and specific paths through those use
cases represented in activity diagrams. The customization is guided by a composition
specification discussed in next subsection.

Figure 2-1 (Left) shows part of the final target model composed for PRODUCT-1.
The INCLUDES relationship describes the case where one use case, the base use case, in-
cludes the functionality of another use case, the inclusion use case. The INCLUDES rela-
tionship supports the reuse of functionality in a use case diagram and is used to express
that the behavior of the inclusion use case is common to two or more use cases. Note that
INCLUDES relationships between use cases may constrain the relationship between the
features related to them. For example, the INCLUDES relationship between the base use
case CTRLTEMPREMOTELY that includes the use case OPENANDCLOSEWINAUTO
may imply that feature REMOTEHEATINGCNTRL(SH) requires feature AUTOMATED-
WINDOWS (AW). We discuss this and other consistency constraints in Section 3.

Figure 2-1 (Right) shows an activity diagram that depicts the possible scenarios
for the use case CNTRLTEMPREMOTELY that comprises activities for the use cases
OPENANDCLOSEWINAUTO, CALCENERGYCONSUMPTION and ADJUSTHEATER-
VALUE. Within this activity diagram it is possible to select several scenarios that cor-
respond to different paths. Two of all the possible scenarios are: Scenario i) includes
reaching the in-home temperature and save energy by means of closing some windows,
and Scenario ii) to use the heater to reach the desired in-home temperature. It is im-
portant to note that the customization of activity diagrams and scenarios depends on
the features chosen for the SPL product and also on the relationship with the use case
model. For example, in PRODUCT-1 the feature AUTOMATEDWINDOWS was not se-
lected, therefore the WINACTUATOR actor in the use case diagram as well as the swim-
lane (also called activity partition) related to WINDOWSACTUATOR should not appear
in any diagram. Therefore, scenarios such as i) are not realizable because of the lack of
windows actuators. This and other constraints will be discussed in Section 3.

Composition Specification To evidence consistency problems between features and
use scenarios we employ a composition process (also called, derivation process) for
use cases and activity diagrams. Languages such as the VML4RE (Variability Mod-
elling Language for Requirements) [20,4] help to specify how use scenarios can be
customized.

Figure 3 illustrates a composition specification that guides the specification of
the transformation of requirements specifications of products in the SmartHome SPL.
VML4RE [20,4] is a textual language that allows associating actions, that wrap a set of
model transformations for specific requirements models such as use cases and activity
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Fig. 2. (1) Referencing undefined model fragments during composition for PRODUCT-1 in the
Use Case model (left side) and in the Activity Diagram for the CntrlTempRemotely scenario
(right side). (2) Mapping variants to model fragments

diagrams, to combinations of features written as logic expressions that we call feature
expressions. Feature expressions can be i) atomic that represent single features such as
“Automated Windows” in Figure 3, Line 1, and ii) compound that also contain logic op-
erators such as AND, NOT and OR such as “And ("Remote Heating Ctrl","Automated
Heating","Internet")” in line 7. Feature expressions evaluation works as follows: if AU-
TOMATEDHEATING, REMOTE HEATING CTRL, AUTOMATED HEATING and INTER-
NET features are selected in a product configuration, the feature expression associated to
the variant named “R-H” (i.e., the compound feature expression: And ("Remote Heat-
ing Ctrl","Automated Heating","Internet") ) will be evaluated to TRUE. The conse-
quence of this is that the actions that are inside the “R-H” variant block (Figure 3, lines
6-13) will be processed and applied to a base model. For example, the CNTRLTEM-
PREMOTELY use case will be inserted into the package HEATING and then it will be
related to other use cases using INCLUDES and EXTENDS relationships. If more than
one feature expression is evaluated to TRUE, the default composition order follows a
top-down sequence (which corresponds to a left-right sequence in Figure 3).

Fig. 3. Composition specification of variants A-W and R-H



Mapping Model. Figure 2-1 (Left) and (Right) show use case and activity diagrams
fragments, such as actors and use cases, related with the variants shown in Figure 3.
The base mechanism to relate requirements model fragments to features is to use a
correspondence table (or mapping table), as presented by [11], [19] and [3]. In our
case, we parse the composition specification to generate the mapping between variants
and parts of the use cases, therefore, for example if variant named A-W inserts the
OPENANDCLOSEWINAUTO use case, we link A-W to OPENANDCLOSEWINAUTO.
To facilitate the visualization of such relationships with the models, in the figure we
assign different gray tones to the models fragments according to the features that they
are related to (see mapping in Figure 2-2). Please note that specific model fragments
could be related also to more than one variant. This may be considered as a m-to-n (m
and n >= 1) mapping between variants and model fragments and is not illustrated in
Figure 2.

2.2 Consistency Checking Motivation

Consistency checking has to ensure that inconsistent requirements do not become part
of the requirements specifications of a given product. Our work aims at guaranteeing
that all the products that could be derived from a feature model indeed have consistent
requirements specifications. This is achieved through the description and verification of
semantic relationships between feature model and use scenarios. One of the possible
inconsistencies between features and use scenarios in the Smart Home SPL happens
between the relationship of variants R-H and A-W, and the INCLUDES relationship be-
tween the use cases CNTRLTEMPREMOTELY and OPENANDCLOSEWINAUTO which
are related to R-H and A-W variants respectively. The domain requirements are:

R1- Only one, none or both R-H and A-W variants can be included in a product. (This
is implicit in the feature model and composition model because all the features in
the feature expression of R-H variant are optional (i.e., REMOTE HEATING CNTRL,
AUTOMATED HEATING and INTERNET are optional features), and the only feature
in the feature expression A-W is also optional (i.e., the AUTOMATED WINDOWS
feature is optional) ); and

R2- If the use case CNTRLTEMPREMOTELY is provided in a product then the use case
OPENANDCLOSEWINAUTO must be provided too, (This is implicit in the includes
relationship from the use case CNTRLTEMPREMOTELY to OPENANDCLOSEWIN-
AUTO in the use case diagram in Figure 2-1 (Left)).

Figure 2-1 shows PRODUCT-1 built using the composition model shown in Figure
3. In PRODUCT-1 the feature expression of variant R-H (3, line 7) evaluates to TRUE.
However, because Figure 1-2 does not include the AUTOMATED WINDOWS feature, the
feature expression of variant A-W (i.e., AUTOMATED WINDOWS) (3, Line 1) evaluates
to FALSE and the actions inside its variant block are not processed. We annotated the
diagrams with numbers that represent the line in Figure 3 where a composition action is
specified. Note that we omitted some of the actions, for example, the insertion of some
actors such as WINSENSOR and WINACTUATOR and some partitions such as HEATER.

PRODUCT-1 presents inconsistent requirements R1 and R2. This is evident during
composition of use scenarios. See lines 10-11 when the action “Includes from UseCase



: "CtrlTempRemotely" to UseCase(s) : "NotifyByInternet" and "OpenAndCloseWin-
Auto" and "AdjustHeaterValue" ” references elements such as the use case OPENAND-
CLOSEWINAUTO that do not exist in the model. In this case, PRODUCT-1 fulfills re-
quirement R1, but not requirement R2. The result is that the functionality provided by
OPENANDCLOSEWINAUTO will not be present in the requirements of PRODUCT-1
and therefore it will not be taken into account in later stages of its development process.

It is not too difficult to check consistency manually in small examples with a re-
duced number of features such as the one mentioned previously. One solution to solve
the inconsistency for our example would be to guarantee the presence of the feature
AUTOMATED WINDOWS when AUTOMATIC HEATING or REMOTE HEATING CTRL
are selected, in every possible feature model configuration using a domain constraint
REQUIRES. Another solution is to establish that AUTOMATED WINDOWS will be a
mandatory feature in the SPL. However, the number of possible feature combinations
may grow exponentially with the number of features of the SPL. The result of this
explosion is that it becomes unfeasible to manually check the consistency of all the
products.

To guarantee that all the products that could be derived from a feature model in-
deed have consistent requirements specifications we take into account the relationships
between domain requirements specified using use scenarios and feature models to pro-
pose rules and constraints to support consistency checking in SPLs use scenarios as it
is shown in the next section.

3 Consistency Checking between Features and Use Scenarios

While some product configurations of a feature model may generate consistent use sce-
narios, other product configurations based on the same feature model could lead to in-
consistencies in the requirements specifications. In this section we present our approach
for consistency checking between SPL features and use scenarios.

3.1 Approach Overview

Figure 4 presents an overview of our approach. Section 2 explained and exemplified
the specification of a feature model, use scenarios (Figure 4, Step 1), and the mapping
between variants and fragments of the use scenarios (Step 2). Based on previous work
[17], we have developed a consistency checking approach for use scenario composition
based on variants. This approach relies on the domain evaluation of feature expressions,
written as propositional formulas that are associated to a variant and transformations of
use scenarios called actions. We denote Df the domain constraints that can be derived
from a feature model of an SPL and are expressed in terms of atomic featuresf (Step 3),
and CV ARf

denote composition constraints that will be derived in next section (Step 4)
and are expressed in terms of variants (V ARf ). We use propositional logic to express
and relate Df and CV ARf

(Step 5). Because we are interested in verifying that all mem-
bers of the product line satisfy a given composition constraint, Equation 1 should not
be “satisfiable”. If it is satisfied, it means that there is a product of the product line that
does not meet constraint CV ARf

. The violating product configurations can be identified
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Fig. 4. Overview of Our Consistency Checking Approach

using a SAT solver (Step 7 and 8). This can support the developer to take informed de-
cisions on modifications of the initial SPL models, for example, creating or modifying
domain constraints (Step 10).

¬
(
Df ⇒ CV ARf

)
(1)

Section 2-1 shows that at least one product (i.e., PRODUCT-1) from the products
that can be configured based on the feature model of the Smart Home SPL is incon-
sistent. In that case, composition constraints (also called implementation constraints)
between the elements in use scenarios such as the INCLUDES between use cases, imply
the application of domain constraints for example, turning the AUTOMATEDWINDOWS
feature from optional to mandatory or creating a REQUIRES dependency (also called
domain constraint) from AUTOMATEDHEATING to AUTOMATEDWINDOWS. That par-
ticular inconsistency that will help to explain our approach can be defined as:

– Rule Required Inclusion Use Case: at least one variant (V ARfreqi), defines an
inclusion use case that must be selected in every feature configuration that contains
the variant (V ARf ) which introduces a base use case linked to the inclusion use
case.

3.2 Deriving Domain Constraints (Df )
Figure 4 - Step 3 shows that the domain constraints are derived from a SPL feature
model. Therefore the Df in a SPL is the same for all the possible products configura-



tions and do not vary depending on the consistency rule. Using a well-known translation
table between feature models and propositional formulas (see Figure 5) helps to get Df

in Equation 1. In Equation 2 we only show the HEATING-CTRL branch because it is
the most complex branch in Figure 1-1 and relates directly with our exemplar “Re-
quired Inclusion Use Case” rule. The translation obtained in the first line of Equation
1 means that all products unconditionally must contain the root feature SMARTHOME.
The second line means that given that HEATING CTRL is a mandatory feature, it must
be included in all the products. The third line means that MANUALHEATING is included
in all the products that include their parent feature (i.e., HEATINGCTRL), in contrast to
AUTOMATEDHEATING and REMOTEHEATINGCTRL (lines 3-4), that may be or not
included when their respective parents HEATINGCTRL and AUTOMATEDHEATING are
included in a product. Line 5 means that REMOTEHEATINGCTRL requires of the IN-
TERNET feature.

1.(SmartHome ⇔ TRUE)∧ (2)

2. (SmartHome ⇔ HeatingCtrl)∧
3. (HeatingCtrl ⇔ ManualHeating) ∧ (AutomatedHeating ⇒ HeatingCtrl)∧
4. (RemoteHeatingCtrl ⇒ AutomatedHeating)∧
5. (RemoteHeatingCtrl ⇒ Internet)

Fig. 5. Mapping from Feature Model to Propositional Logic [6].

In this section we addressed Df , the first part of Equation 1. Next section presents
CV ARf

that comprises a set of constraints that are essential for consistency between
use scenarios and the set of domain constraints expressed in Equation 2.

3.3 Deriving Composition Constraints (CV ARf )

Composition constraints act as consistency rules describing the semantic relationships
that must hold among the different models. Figure 4-4 shows two kinds of composition
constraints that can be expressed in propositional logic. We classified them according
to the type of domain constraint that they relate with: i) a constraint that implies a
REQUIRES relationship between features that therefore implies dependencies between
variants (Figure 4- Step 4), and ii) a constraint that implies a EXCLUDES relationship
(Figure 4- Step 6) between features and therefore implies incompatibilities between
variants (Figure 4- Step 5). This section shows those constraint equations expressed in
propositional logic.

EXCLUDES Relationship: Let V ARf be a variant that defines a model element e.
A variant V ARfconf I conflicts with V ARf if V ARfconf I defines a model element
c which cannot be present in the same requirements specifications of a product where
element e is also present. Therefore, because of the incompatibility between elements



e and c, if variant V ARf is selected then variant V ARfconf I should not be selected
in the same product configuration. This is denoted in the following expression where k
represents the number of variants in the composition specification:

CV ARf ≡ V ARf ⇒ ¬
( ∨
1..k (V ARfconf i)

)
≡ ¬V ARf ∨ ¬

( ∨
1..k (V ARfconf i)

)
(3)

≡ V ARf ∧
∨

1..k V ARfconf i

REQUIRES Relationship: Let V ARf be a variant that refers to a model element e
defined by another variant. To be consistent, the requirements specifications of a prod-
uct that includes variant V ARf must also include at least one other variant V ARreqI

(required variant) where element e is defined. This is denoted in the following expres-
sion where k represents the number of variants in the composition model:

CV ARf ≡ V ARf ⇒
∨

1..k (V ARfreqi) ≡ ¬V ARf ∨
∨

1..k (V ARfreqi) (4)

≡ V ARf ∧
∧

1..k ¬V ARfreqi

The rule “Required Inclusion Use Case” mentioned at the beginning of this section
is an example of this last kind of constraint expression. An instance of this constraint
is found in our motivation example related to the use scenario of CNTRLTEMPRE-
MOTELY. For example, given that the variant V ARf = R-H is selected (i.e., a product
with REMOTE HEATING CNTRL, AUTOMATED HEATING and INTERNET features),
and it is related to the base use case CTRLTEMPREMOTELY, we want to guarantee that
there are at least one variant (e.g., V ARf reqI = A-W) related to the inclusion use case
OPENANDCLOSEWINAUTO (i.e., model element e = use case OPENANDCLOSEWIN-
AUTO), and that its feature expression evaluates to TRUE in all possible feature model
configurations. This way, we guarantee the presence of the functionality required by
CTRLTEMPREMOTELY, such as to include a WINDOWSACTUATOR that regulates the
temperature opening and closing windows. Thus, we can get a constraint instance re-
placing the variants by their corresponding feature expressions:

(RemoteHeatingCntrl ∧ AutomatedHeating ∧ Internet ) (5)

∧¬(AutomatedWindows )

3.4 Replacing Terms in Equation
The replacing step depicted in Figure 4- Step 7 depends on the kind of constraint that
we created in previous section. If we replace CV ARf

of Equation 4 in Equation 1 and
perform some logic manipulation to translate expressions of the form x ⇒ y to ¬x ∨ y,
and x ∨ y to ¬x ∧ ¬y respectively, we obtain the expression in Equation 6.

REQUIRES : ¬
(
Df ⇒

(
V ARf ∧

∧
1..k¬V ARfreqi

))
≡ Df∧V ARf∧

∧
1..k¬V ARfreqi

(6)

Similarly, if we replace CV ARf
of Equation 3 in Equation 1, and perform some logic

manipulation, we obtain the expression in Equation 7.

EXCLUDES : ¬
(
Df ⇒

(
V ARf ∧

∨
1..kV ARfconf i

))
≡ Df∧V ARf∧

∨
1..kV ARfconf i

(7)



3.5 Checking SATisfability

Figure 4- Step 8 shows that the input for satisfability checking are expressions such as
the ones in 6 and 7. Each expression to be checked is instantiated with:

i) the specific domain constraints, Df of the SPL produced in Equation 2,
ii) the feature expressions related to the variants V ARf and either the set of required

variantsV ARf reqi, or the set of conflictant variants V ARf conf i.
Equation 4 evaluates to true when any action inside variant V ARf requires an ele-

ment or set of required elements that are not composed in the use scenarios. It happens
because none of the correspondent variants V ARf reqi that introduce the required el-
ements was selected in the product configuration. Also, expression 3 evaluates to false
when variant V ARf defines an element or set of elements that are introduced in the use
scenarios that also contain elements defined by other variant(s) V ARf confi.

3.6 Show Results and SPL Models Modification

The possible results generated by a SATisfability checker for each expression (Fig-
ure 4- Step 9) can be TRUE (satisfiable) or FALSE (insatisfiable). In case we obtain
FALSE for all the expressions, we know that the SPL is consistent because there are not
inconsistencies between the relationships and dependencies (e.g., excludes, optional,
mandatory, requires) between features depicted in the SPL feature model, and the use
scenarios. In case we obtain a TRUE in an expression, our tool based on the mapping
between variants and model elements in the use scenarios shows a list of the variants
and the model fragments related to the inconsistency. Taking the example of the Smart
Home feature model depicted in Figure 1, the result of the SAT solver for the Rule -
Required Inclusion Use Case is that it is satisfiable (i.e., it evaluates to TRUE). Which
means that there is an inconsistency between the features and use scenarios. An example
of the type of message generated by our tool to the user 4 is:

“...Inconsistent use scenario(s) [CTRLTEMPREMOTELLY] and feature(s) in feature ex-
pression(s) of variant(s) [A-W], [R-H]. The Action: [Includes from UseCase: “Ctrl-
TempRemotely” to Use Case(s) “OpenAndCloseWinAuto”] implies a [REQUIRES] re-
lationship between variant [R-H] and required variant(s) [A-W] that is not enforced in
the SPL feature model...”.

Based on this information, for the SAT solver to evaluate to FALSE, the developers may
consider for example to:

- Modify the feature model: the set of SPL domain constraints that can be extracted
from the feature model can be modified for example creating a REQUIRES relation-
ship for AUTOMATEDHEATING feature to AUTOMATEDWINDOWS, or changing the
AUTOMATEDWINDOWS feature from optional to mandatory.

- Modify use scenarios and composition model: for our particular rule, developers
may want to check if in fact the INCLUDES association between use cases CTRLTEM-
PREMOTELY and OPENANDCLOSEWINAUTO is mandatory for every single product
or not.



4 Tool Support

Tools for consistency checking can be highly effective for detecting errors in SPL re-
quirements specifications. Such tools not only can find errors people miss, but also they
can alleviate developers from the tedious and error-prone task of checking requirements
specifications for consistency. Our tool prototype Variability Consistency Checker for
Requirements (VCC4RE) [2] was designed to support the process described in Section
3.1 and consist on several components: (i) composition models editor for the VML4RE
language, (ii) two translators: one from propositional formulas in prefix notation to con-
junctive normal (CNF) form in DIMACS format [1], and the other from the CNF clauses
provided by the feature model editor to DIMACS format; and finally (iii) the consistency
checker.

We created the composition model editor using EMFTEXT 1. It provides the soft-
ware infraestructure to derive an initial concrete syntax and plug-in based on the meta-
model of our VML4RE language written in Ecore 2. We employ this technology mostly
because of two reasons: first, it separates concrete syntax and abstract syntax which
eases the maintenance of the language, and second, it provides a default Human Usable
Notation (HUTN) 3 as concrete syntax. Using the HUNT concrete syntax in compari-
son with our previous tool version [20] allows a more usable and suitable notation for
describing requirements composition.

We created a translator for feature models created with the SPLOT editor 4. We
chose SPLOT because it allows us to share and edit our models collaboratively via
web, and because it generates the CNF formula that represents the domain constraints
(Df ) in our equations that later we transform to a widely accepted standard format for
boolean formulas in CNF called DIMACS.

Also, we created another translator to obtain the feature expressions related to each

variant in V ARf ∧
∧
1..k ¬V ARfreqi and V ARf ∧

∨
1..kV ARfconf i from our com-

position model. It translates from a prefix notation of propositional formulas of our
composition specification, to CNF formulas in DIMACS format. Composition model,
consistency rules, as well as the use cases and activity diagrams modelled in any Ecore-
based UML tool are interpreted by our consistency checker to produce a set of con-
straints expressions in CNF DIMACS format. Then, it is possible to use a standard SAT
solver to determine the satisfability of each formula. In our case, we experimented with
PicoSAT 5 and SAT4J6.

5 Evaluation

The complete Smart Home SPL was used to evaluate our approach. We chose this case
study because, despite of being a large-scale embedded system, this can be understood

1 http://www.emftext.org/: Concrete syntax mapper
2 http://www.eclipse.org/modeling/emf/: Eclipse Modelling Framework based on Ecore
3 http://www.omg.org/spec/HUTN/: The OMG HUTN specification.
4 http://www.splot-research.org/: Software Product Line Online Tools
5 http://fmv.jku.at/picosat/: PicoSAT: Pico satisfability solver
6 http://sat4j.org/: SAT for Java



by a general reader given its application in everyday’s life. Also, we had previous expe-
rience modelling variability and part of the use scenarios of the Smart Home supported
by one of our industrial partners who set the requirements of the system [18].

Features 59 Variants 27
CNF clauses 79 Rules 6
Use Cases 36 Rule instances checked 74
Activity Diagrams 13 Domain constraints created after consistency checking 16
Scenarios 48 Time taken in consistency checking in milliseconds 810

Table 1. Evaluation results using VCC4RE in the Smart Home SPL

Table 1 summarizes some information about the evaluation. The Smart Home has 59
features and comprises significant aspects of modern home automation domain such as
security, HVAC (Heating, Ventilating, and Air Conditioning), illumination control, fire
control and multiple user interfaces. These features describe variability at the use sce-
narios therefore, it is relevant to all kind of SPL stakeholders which are not necessarily
experts in domotics and its implementation technologies. When mapped to proposi-
tional formulas the feature model produced 79 clauses in CNF format.

We modelled the use scenarios manually using an open source Ecore-based UML
tool called Papyrus 7. In total we modelled 36 use cases, 13 activity diagrams that can
represent 48 different possible scenarios, and an initial set of 6 rules for use scenario
consistency that follow a very similar reasoning than the rule Required Inclusion Use
Case explained in Section 2. They vary only in the kind of model elements and their
relationships with other model elements, for example: inclusion, generalization, spe-
cialization, aggregation and mapping between activity diagram partitions to actors and
use cases. Based on the scenarios and feature model we specify 27 variant modules us-
ing VML4RE. Before applying our approach for consistency checking, we found that
using the Smart Home feature model it was possible to generate ONE BILLION prod-
uct configurations. This information can be obtained using the feature model analyzer
provided by the SPLOT tool and allows us to evidence the complexity of checking con-
sistency without any approach and tool support such as the one that we proposed in this
paper.

In our experiments we found in total 74 rules instances to check. Using this infor-
mation we created 16 domain constraints, mainly dependencies of type REQUIRES
between features in the feature model that finally help us to solve consistency between
use scenarios and features. 16 errors is a significant number taking into account mainly
two things: i) Use scenarios, feature model and composition were first carefully mod-
eled and before applying our approach they were apparently “perfect”, and ii) The large
number of possible combinations of features, the number of variants and use scenarios
makes this task challenging, however our approach and tool support gives results in
a “blink of an eye”. The time taken to evaluate consistency rules using the Pico SAT
solver and produce the results is in the order of milliseconds when run on an Intel

7 http://www.eclipse.org/modeling/mdt/?project=papyrus : Papyrus



Core-Duo i5 at 2.4 Ghz. Given that in VCC4RE, feature models and constraints are
mapped to clauses, the performance and scalability of our approach are proportional
to the efficiency of the SAT solvers which are able to handle large number of clauses
in industrial applications. However, though encouraging results, the scalability of our
approach needs to be more extensively validated with more complex case studies and
probably using more consistency rules. Doing that is part of our future work.

6 Discussion and Related Work

An issue in the development of SPLs is the lack efficient approaches for consistency
checking among all the artifacts, including requirements specifications. In model-driven
development this becomes a crucial issue as software is built by means of a chain of
transformations. This can start from assets such as requirements specification models,
to code-based assets that typically depend on a particular implementation technology.
In this setting, the quality of the final code of target products depends mostly on (i) the
transformations, (ii) the source models of each transformation and (iii) the information
added after each transformation. Therefore, to create constraints helps not only to com-
pose models that helps to understand the intended products to the SPL stakeholders, but
also to obtain good quality source models that are the base for deriving good quality
code.

The idea of this paper was to explore whether it was possible to use so called “hard”
methods for consistency checking as early as requirements analysis. Usually such meth-
ods are used much later in the development. We believe now that they can be used much
earlier and therefore some inconsistencies do not have to be left until later to be de-
tected. The use of these methods is transparent for the SPL developer and therefore, it
does not add extra complexity to the modeling process. SAT solvers are implemented
by libraries that are used internally by VCC4RE.

The effective use of use scenarios in SPL demands mechanisms for consistency
checking that cope with variability. However, to the best of our knowledge, this issue
has not been extensively researched except by Czarnecki, et al [9]. They observed that
implementation constraints should follow from domain constraints. Their findings ap-
ply to a different composition technique that uses model templates to generate concrete
models for product configurations. That work ensures that no ill-structured template
instances (i.e., concrete models of products) will be generated from a correct product
configuration. In comparison with that work, we check consistency between use sce-
narios and feature models of domain requirements specifications and we do not assume
that the feature model contains all domain constraints since its creation as it usually hap-
pens in incremental SPL development processes. In fact, our approach benefits from the
semantic of the use scenarios to deduce domain constraints.

There are different research areas related to our work and that have been taken
into account the importance of consistency constraints in models. In the field of well-
formedness of models for example Egyed [10]. Also, for single systems modeling, Ja-
cobson [15] used aspect-oriented use case models. However, none of those works check
consistency of SPL models, and their composition mechanism does not support model



weaving of model fragments as it is possible with a requirements-tailored composition
language as VML4RE.

Previous work [17] addressed consistency in composition in multi-view modeling
in SPL following a FOSD [5] approach for models closer to the product implementa-
tion. Also, Harhurin and Hartmann [12] provided denotational semantics and a notation
called Service Diagram to describe system functionality and variability. Both works fo-
cus only on depedencies between atomic features. Our work addresses composition of
requirements specifications and an advanced way for model composition based on an
aspect-oriented framework VML4RE that is capable to manage variants in addition to
atomic features.

7 Conclusions and Future Work

This paper establishes constraints and presents tool support for consistency check-
ing between use scenarios and features in the SPL domain, using feature models and
VML4RE. However, our approach does not depend on the use of VML4RE. We use it
because its actions facilitate expressing the composition in use scenarios. The objective
of checking consistency is to guarantee that all the products that could be derived from
a feature model indeed have consistent requirements specifications. This means without
omitting information or containing conflicting requirements that eventually may cause
errors when transformed and implemented into more platform dependent models and
code.

The feasibility of our approach was evaluated using a prototype tool and a home
automation case study. The results show that performance and scalability were not an
issue. However, these aspects need further assessment with larger and more complex
SPLs and consistency rules. Such assessment is part of our future work.

We think that the application of constraints is necessary but do not satisfy com-
pletely the problem of consistency checking of models. This problem also depends on
the composition order of the variants and in the application order of the actions inside
each variant block. Currently, we are researching algorithms to calculate the precedence
order between variants and its application in non-monotonic composition. Our proposal
here is a proof of concept. Our strategy can be extended for other models, for example
to model variability of system qualities, that is not within the scope of our paper and is
part of our future work. Here, we are addressing part of the problem for some models.
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